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Fig. 1. Multiple importance sampling (MIS) with the common balance or power heuristic can provide inferior results. Here, we show examples from bidirectional
rendering in global illumination (left) and resampled importance sampling in direct illumination (right). In both cases, prior heuristics produce unnecessary
noise, as quantified by the relative mean-squared error (relMSE). We propose a simple and practical correction-factor-optimization, applicable on top of any
MIS weighting heuristic, that yields consistently lower estimator noise.

Multiple importance sampling (MIS) is a vital component of most rendering
algorithms. MIS computes a weighted sum of samples from many differ-
ent techniques to achieve generalization, that is, to handle a wide range of
scene types and lighting effects. A key factor to the performance of MIS is
the choice of weighting function. The go-to default – the balance heuris-
tic – performs well in many cases, but prior work has shown that it can
yield unsatisfactory results. A number of challenges cause this suboptimal
performance, including low-variance techniques, sample correlation, and
unknown sampling densities. Prior work has suggested improvements for
some of these problems, but a general optimal solution has yet to be found.
We propose a general and practical weight correction scheme: We optimize,
on-the-fly, a set of correction factors that are multiplied into any baseline
MIS heuristic (e.g., balance or power). We demonstrate that this approach
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yields consistently better equal-time performance on two rendering appli-
cations: bidirectional algorithms and resampled importance sampling for
direct illumination.
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1 INTRODUCTION
Rendering algorithms are faced with a wide range of scene types
and light transport effects that must be simulated. To handle this
diverse input, virtually all renderers utilize the same fundamental
tool: Multiple importance sampling (MIS). MIS allows us to devise
general solutions by combining many Monte Carlo sampling tech-
niques into one joint algorithm. Thus, the combined algorithm will
ideally have at least one well-suited technique for every scene type
or light effect that it might encounter.
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A key ingredient to the performance of MIS is the choice of
weighting function. Each Monte Carlo sample in an MIS combina-
tion is multiplied by this weighting function, such that the total sum
of all sample weights yields the desired, unbiased pixel estimate.
Ideally, the MIS weight should be highest for the samples of the
“best” technique, i.e., the technique with lowest variance. Unfortu-
nately, maintaining this ideal is easier said than done with common
weighting heuristics such as the balance or power heuristic.

Previous work has identified a number of challenging cases,
such as low-variance weighting issues [Veach and Guibas 1995;
Grittmann et al. 2019], issues with sample correlation [Popov et al.
2015; Grittmann et al. 2021], or issues from unknown sample dis-
tributions [Kelemen et al. 2002; Nabata et al. 2020]. Solutions to
these challenges have been proposed, but these are usually problem-
specific, sometimes application-specific, and always suboptimal.

Optimal MIS weights have been derived [Kondapaneni et al. 2019]
and adapted such that they can be applied to more rendering use-
cases [Hua et al. 2023]. However, these require simplifying assump-
tions, namely uncorrelated samples and known, closed-form PDFs
of all samples, limiting their applicability.

As a general and practical alternative, we propose a simple but ef-
fective weight correction scheme for MIS weighting. Specifically, we
optimize correction factors that are multiplied into the MIS weight.
To achieve practicality, we utilize a direct search over a tiny set of
candidate correction factors, paired with aggressive filtering. We
test our method on two rendering applications: Correcting for cor-
relation in bidirectional algorithms, and correcting for unknown
sampling densities in resampled direct illumination. In both cases,
we achieve consistent equal-time performance gains over the base-
line: Our method was never noticeably worse than the baseline and
up to two times better in some cases (see Fig. 1 for an example).
In the following, we first recap the essential background (Sec-

tion 2) and discuss the main MIS weighting challenges in typical
rendering applications (Section 3). The subsequent sections intro-
duce our method and evaluate it on the two rendering applications:
bidirectional rendering with vertex connection and merging (VCM)
[Georgiev et al. 2012; Hachisuka et al. 2012] and resampled impor-
tance sampling [Talbot et al. 2005] applied to direct illumination
computation (inspired by ReSTIR [Bitterli et al. 2020] but simplified).

2 PRELIMINARIES
Monte Carlo integration is the prevalent technique to numerically
compute integrals such as the rendering equation [Kajiya 1986]. A
Monte Carlo estimator

⟨𝐹 ⟩ =
𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖 )
𝑛𝑝 (𝑥𝑖 )

≈
∫
X
𝑓 (𝑥) d𝑥 = 𝐹 (1)

estimates the integral 𝐹 by averaging the weights of 𝑛 samples 𝑥𝑖
following a probability density (PDF) 𝑝 (𝑥). A well-chosen PDF is
key to efficient Monte Carlo integration: The better 𝑝 (𝑥) matches
the shape of the integrand 𝑓 (𝑥), the fewer samples are required.
The quality of a Monte Carlo estimate can be measured by its

variance: the difference between the expectation of the square and

the square of the expectation:

V [⟨𝐹 ⟩] = E

(
𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖 )
𝑛𝑝 (𝑥𝑖 )

)2 − 𝐹 2. (2)

In rendering, this variance manifests as noise in the image.

2.1 Multiple importance sampling (MIS)
Unfortunately, it is difficult to find a single PDF that achieves satis-
factory performance.Multiple importance sampling (MIS) [Veach and
Guibas 1995] therefore combines samples from multiple techniques
𝑡 ∈ T , each using a different PDF 𝑝𝑡 . The MIS estimator

⟨𝐹 ⟩MIS =
∑︁
𝑡 ∈T

𝑛𝑡∑︁
𝑖=1

𝑤𝑡 (𝑥𝑡,𝑖 )
𝑓 (𝑥𝑡,𝑖 )

𝑛𝑡𝑝𝑡 (𝑥𝑡,𝑖 )
(3)

sums over all samples from all techniques and multiplies their usual
Monte Carlo weights by an MIS weighting function 𝑤𝑡 (𝑥). The
performance of MIS hinges on the choice of techniques, sample
counts, and weighting function. We focus on the latter.

Choosing techniques. MIS is frequently applied to mix any tech-
niques that are readily available. For instance, typical unidirectional
path tracers mix BSDF importance sampling and light source sam-
pling via MIS [Veach and Guibas 1995; Pharr et al. 2023, Chapter
13.4]. Bidirectional methods, like the vertex connection and merg-
ing (VCM) algorithm [Georgiev et al. 2012; Hachisuka et al. 2012],
combine an enormous set of sampling techniques – namely, every
possible combination of camera prefix and light suffix paths through
connection with shadow rays or merging via photon density esti-
mation. However, combining all techniques at ones disposal can be
suboptimal: Previous work has shown that the efficiency of MIS
benefits greatly from avoiding redundancy in the techniques [Kar-
lík et al. 2019]. Finding a good set of techniques that complement
each other well thus remains an important problem. For example,
Grittmann et al. [2018] rely on the MIS weights 𝑤𝑡 to prune sam-
pling of the expensive photon mapping [Jensen 1996] technique
where it is not absolutely necessary. Approaches like that stand to
benefit from improved MIS weighting functions.

Optimal sample counts. Another key aspect is the number of sam-
ples 𝑛𝑡 invested in each technique: Ideally, computation should be
spent on the most beneficial techniques. Prior work has shown
that this can be achieved through heuristics [Pajot et al. 2010;
Grittmann et al. 2018] or direct optimization [Lu et al. 2013; Sbert
et al. 2019; Murray et al. 2020; Müller 2019] and even for complex
many-technique combinations like VCM [Grittmann et al. 2022]. The
MIS weighting and the chosen sample counts influence each other;
ideally, they should be optimized jointly [He and Owen 2014]. Our
direct search optimization is similar to the one used by Grittmann
et al. [2022], so joint optimization could be possible.

MIS weighting functions. Often, the balance heuristic [Veach and
Guibas 1995] is a great choice for the weighting function. Its weights
are proportional to the effective density of each technique,

𝑤bal
𝑡 (𝑥) = 𝑛𝑡𝑝𝑡 (𝑥)∑

𝑘 𝑛𝑘𝑝𝑘 (𝑥)
∝ 𝑛𝑡𝑝𝑡 (𝑥). (4)
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Intuitively, this means that “good” high-density samples will receive
a higher weight, while “bad” low-density samples – which are apt
to cause outliers – will be weighted down. The balance heuristic
has many desirable properties. Most importantly, by relying only
on sample counts and PDFs, it is cheap and easy to compute, and
the variance of the resulting MIS estimator has theoretically-proven
upper bounds [Veach and Guibas 1995]. Nevertheless, the balance
heuristic can perform badly – sometimes surprisingly so.

3 CHALLENGES FOR MIS WEIGHTING
MIS weighting with the prevalent balance heuristic faces three
main challenges: low-variance techniques, correlated samples, and
unknown PDFs. Solutions from prior work address different subsets
of these: Optimal MIS [Kondapaneni et al. 2019] can solve the low-
variance issue, ad-hoc corrections for correlated samples have been
proposed [Grittmann et al. 2021; Jendersie and Grosch 2018], and
workarounds for unknown PDFs exist [Nabata et al. 2020; Kelemen
et al. 2002]. We propose a practical, simple, and general MIS weight
correction that addresses all three challenges.

3.1 Variance bounds of the balance heuristic
The balance heuristic minimizes an upper bound of the variance
of the MIS estimator [Veach and Guibas 1995]. Namely, assuming
independent samples, the variance of Eq. (3),

V [⟨𝐹 ⟩MIS] = E

(∑︁
𝑡 ∈T

𝑛𝑡∑︁
𝑖=1

𝑤𝑡 (𝑥𝑡,𝑖 )
𝑓 (𝑥𝑡,𝑖 )

𝑛𝑡𝑝𝑡 (𝑥𝑡,𝑖 )

)2 − 𝐹 2, (5)

can be written as the difference between the sum of per-technique
single-sample second moments, and the per-technique squared first
moments [Veach 1997, Appendix 9.A, p. 288],

V [⟨𝐹 ⟩MIS]
iid
=

∑︁
𝑡 ∈T

∫
X

𝑤2
𝑡 𝑓

2

𝑛𝑡𝑝𝑡
d𝑥 −

∑︁
𝑡 ∈T

1
𝑛𝑡

(∫
X
𝑤𝑡 𝑓 d𝑥

)2
. (6)

The balance heuristic minimizes the first term,

𝑤bal
𝑡 = argmin

𝑤𝑡

∑︁
𝑡 ∈T

∫
X

𝑤2
𝑡 𝑓

2

𝑛𝑡𝑝𝑡
d𝑥 . (7)

Hence, the balance heuristic performs well whenever this sum of
single-sample per-technique second moments dominates the vari-
ance. Next, we will outline three cases where this is not true.

3.2 Low-variance techniques
The first challenge occurs if one of the techniques has close to zero
variance. Then, by definition, its single-sample second moment will
be almost identical to its first moment,

V [⟨𝐹 ⟩𝑡 ] ≈ 0 ⇒
∫
X

𝑤2
𝑡 𝑓

2

𝑛𝑡𝑝𝑡
d𝑥 ≈ 1

𝑛𝑡

(∫
X
𝑤𝑡 𝑓 d𝑥

)2
. (8)

In the extreme case of zero variance, the second-moment that the
balance heuristic optimizes will thus be infinitely bigger than the
actual variance of the technique. So the balance heuristic “assumes”
this technique to be much worse than it really is, and assigns a too
low weight to it.

This challenge is the motivation behind the power, maximum,
and cut-off heuristics [Veach and Guibas 1995]. The power heuristic,
for example, distorts the balance heuristic by an exponent,

𝑤
pow
𝑡 (𝑥) ∝ [𝑛𝑡𝑝𝑡 (𝑥)]𝛽 , (9)

typically, 𝛽 = 2. This further increases the weight of (presumably)
“good” techniques and hence it can ameliorate low-variance weight-
ing issues. However, there is no guarantee for that, and, indeed, the
worst-case variance bounds of the power heuristic are worse than
those of the balance heuristic [Veach and Guibas 1995].

One option is to incorporate variance estimates of each technique
into the balance heuristic, as done by variance-aware MIS (VA-MIS)
[Grittmann et al. 2019],

𝑤var-aware
𝑡 (𝑥) ∝ 𝑣𝑡𝑛𝑡𝑝𝑡 (𝑥), (10)

where 𝑣𝑡 =

∫
X

𝑓 2

𝑛𝑡𝑝𝑡
d𝑥

E

[(∑𝑛𝑡
𝑖=1

𝑓 (𝑥𝑡,𝑖 )
𝑛𝑡𝑝𝑡 (𝑥𝑡,𝑖 )

)2]
− 𝐹 2

(11)

is the ratio between the single-sample second moment of the tech-
nique (that the balance heuristic optimizes for (7)) and its full vari-
ance. This correction factor is designed to fulfill two properties:
(1) If a technique has (close-to) zero variance, it will receive unit
weight, 𝑤𝑡 (𝑥) = 1. (2) If multiple techniques have identical PDFs
but different variances, their weight will be proportional to their
reciprocal variances – the optimal constant weighting. Beyond these
properties, VA-MIS remains heuristic in nature, can perform worse
than the balance heuristic, and does not support biased techniques,
i.e., cases where 𝑝𝑡 (𝑥) = 0 for some 𝑥 where 𝑓 (𝑥) ≠ 0.
Better results can be achieved via optimal MIS weights [Konda-

paneni et al. 2019; Hua et al. 2023]: If samples are independent, and
all PDFs known in closed-form, then (approximately) optimal MIS
weights can be computed on-the-fly while rendering by estimating
the coefficients for a linear system of equations and solving it. In
addition to these assumptions, optimal MIS weighting is also non-
trivial to implement, mostly because it requires to track zero-valued
samples (i.e., 𝑓 (𝑥) = 0) and correctly compute their PDF values.
Our weight correction achieves comparable results to VA-MIS

for the low-variance challenge, but offers more robust and reliable
improvements because it is not a heuristic but a direct optimization.

3.3 Correlated samples
The balance heuristic’s error bound was derived under the assump-
tion of independent samples. Many rendering algorithms, however,
introduce some amount of correlation. For example, photonmapping
methods reuse the same camera prefix path across millions of full-
path samples constructed via merges with all light sub-paths (most
of which have zero contribution) [Georgiev et al. 2012; Hachisuka
et al. 2012]. Then, the term the balance heuristic minimizes is off by
another quantity: the sample covariance Cov (cf., Eq. (6)),

V [⟨𝐹 ⟩MIS] =
∑︁
𝑡 ∈T

∫
X

𝑤2
𝑡 𝑓

2

𝑛𝑡𝑝𝑡
d𝑥 −

∑︁
𝑡 ∈T

1
𝑛𝑡

(∫
X
𝑤𝑡 𝑓 d𝑥

)2
+ Cov. (12)

The exact equation of this covariance depends on the nature of the
correlation. Note, that positive covariance increases the variance. So
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the more the samples are correlated, the worse the balance heuristic
will perform.

A computable formulation of optimal MIS weights in the presence
of sample correlation has not yet been found. While variance-aware
weights are general enough to tackle this challenge, their achievable
improvements are limited by estimation noise and their heuristic
nature. Prior work has proposed ad-hoc solutions for correlation in
the context of the VCM algorithm [Grittmann et al. 2021; Jendersie
and Grosch 2018], again by including heuristic correction factors
in the balance heuristic weight. For example, the correlation-aware
MIS (CA-MIS) weights [Grittmann et al. 2021] compute

𝑤cov-aware
𝑡 (𝑥) ∝ 𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥), (13)

where
𝑐𝑡 (𝑥) =

𝑃𝑡 (𝑦)
𝑃𝑡 (𝑦) + 𝑃𝑡 (𝑧) − 𝑃𝑡 (𝑦)𝑃𝑡 (𝑧)

(14)

is a heuristic correction factor that penalizes paths 𝑥 = 𝑦𝑧 if their
(shared) camera prefix 𝑦 has a lower probability than the light suffix
𝑧. To enable that, a unitless path probability

𝑃𝑡 (𝑦) =
∏

𝑝𝑡 (𝑦𝑖 |𝑦𝑖−1)𝜋𝑟2 (15)

is computed, where 𝑝𝑡 (𝑦𝑖 |𝑦𝑖−1) is the surface-area PDF of sampling
the 𝑖th vertex of the path, and the radius 𝑟 is a parameter computed
from the distance between the camera position 𝑦0 and the first
hit point 𝑦1 as 𝑟 = 0.0175∥𝑦1 − 𝑦0∥; it makes the weighting scale
invariant. Intuitively, this heuristic penalizes paths where the prefix
𝑦 is less likely than the suffix 𝑧, because this indicates that significant
covariance might occur.

Our approach offers a theoretically sound, generic method to cor-
rect the balance heuristic when samples are correlated. It can be used
in isolation or on top of the heuristics proposed by prior work. Note
that we only consider correlation among samples used for the same
integral. That is, we only consider correlation within, not across
pixels. Correlation across pixels arises due to small-step mutations
in MCMC, or other algorithms that share a single high-contribution
sample across a large number of nearby pixels. Whether it is possi-
ble to account for pixel correlation in MIS, and how to do so, is a
question we leave for future work.

3.4 Unknown PDFs
A key advantage of the balance heuristic and its derivatives is that
computation requires only the sample counts and PDF values, quan-
tities that are typically easy enough to obtain efficiently.
However, there are at least two families of methods that cannot

compute exact, closed-form PDFs, namely Markov-chain Monte
Carlo (MCMC) [Veach and Guibas 1997; Šik et al. 2016; Kelemen
et al. 2002] and resampling [Talbot et al. 2005; Popov et al. 2015;
Nabata et al. 2020; Bitterli et al. 2020; Lin* et al. 2022] methods.
These generate samples that eventually follow a target distribu-

tion 𝑝 (𝑥). For example, resampling methods first generate candidate
samples with PDF 𝑞(𝑥) and then resample a subset of these candi-
dates. In the limit, with infinite candidate samples, the resampled
sample(s) will be distributed according to the target distribution.
But for a finite number of candidates𝑀 , the actual distribution after
resampling is not easily computable. On top of that, the target 𝑝 (𝑥)
itself is usually only known up to a normalizing constant.

To use resampling or MCMC in an MIS combination, two op-
tions present themselves. We could use the candidate PDF 𝑞(𝑥) as
a surrogate for MIS weighting purposes. That, however, neglects
the improvements gained from the MCMC or resampling method.
Hence, the weight will be too low whenever resampling is effective.
The other extreme is to pretend that the samples already follow the
target distribution 𝑝 (𝑥) [Kelemen et al. 2002]. This requires us to
numerically estimate or approximate the normalizing constant, as
we generally only know 𝑝∗ (𝑥) ∝ 𝑝 . Additionally, the samples will
only actually follow the target given infinite candidates / mutations.
To account for that, previous work has suggested an interpolation
between the candidate and target PDFs [Nabata et al. 2020]:

𝑤RIS
𝑡 (𝑥) ∝

(
1
𝑀

1
𝑞(𝑥) +

(
1 − 1

𝑀

)
⟨𝑃∗⟩
𝑝∗ (𝑥)

)−1
, (16)

where𝑀 is the number of candidate samples, 𝑞 the candidate PDF,
𝑝∗ (𝑥) the unnormalized target function, and ⟨𝑃∗⟩ an estimate of its
normalization factor (i.e., ⟨𝑃∗⟩ ≈

∫
X 𝑝∗ (𝑥) d𝑥 ) computed from prior,

independent samples. Our method can be used to either replace or
improve upon this heuristic weighting.

4 OUR APPROACH
Prior work has successfully improved upon the balance heuristic by
including heuristic correction factors 𝛽𝑡 (𝑥), i.e.,

𝑤𝑡 (𝑥) ∝ 𝛽𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥). (17)

Examples include the above-mentioned 𝑐𝑡 (𝑥) (14) and 𝑣𝑡 (11), or the
power heuristic (where 𝛽𝑡 (𝑥) = 𝑛𝑡𝑝𝑡 (𝑥)). We improve or replace
these with an optimized correction factor 𝛾 , i.e., our weights read:

𝑤𝑡 (𝑥) ∝ 𝛾𝑡 𝛽𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥). (18)

To achieve practicality, 𝛾𝑡 are constant per technique (or per group
of techniques). We find an approximation of the optimal set

{𝛾opt𝑡 } ≈ argmin
{𝛾𝑡 }

V [⟨𝐹 ⟩MIS] (19)

via a direct search over variance estimates. This approach avoids
issues with non-convexity and correlated samples, and facilitates a
fast convergence rate. A key insight from our work is that such a sim-
ple and seemingly crude approach achieves robust and significant
improvements.

4.1 Simplifications
We perform a direct search over the variance estimates of a small
number of correction factors. Those factors are shared over multiple
integrals (e.g., all path lengths in a pixel) and applied to a group of
techniques (e.g., all merging techniques).

Direct search. We opt for direct-search rather than gradient-based
optimization for three main benefits. First, the variance (5) is easy
to compute for any MIS estimator, while its gradients can become
challenging due to, e.g., covariance. Second, direct-search enables a
single-step optimization and does not require prolonged iterative
refinement (though such refinement is, of course, still possible if
desired). Finally, provided 𝛾𝑡 = 1 is included in the candidates, we
can guarantee robust and consistent improvements over the plain
balance heuristic.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Rough Glasses

relMSE
zoom-in

Reference

2.714e-012.714e-01 8.061e-018.061e-01

Filtered
Practical Extended

2.091e-012.091e-01 2.088e-012.088e-01

Precomp.
Practical Extended

0.6

0

Fig. 2. Equal-sample comparison between a small set of candidate correction
factors (“Practical”) and a larger one (“Extended”). The “Filtered” version
selects the best factor based on single-sample estimates, the “Precomp.” one
utilizes more converged variance estimates. The top row shows rendered
images, the bottom row visualizes their error (relMSE) in false color. The
fine-granular control of the “Extended” pool has next to no benefits with
precomputation. In the practical “Filtered” version, it makes the optimization
more susceptible to noise.

Small number of candidates. Adrawback of a discrete direct search
solution is the less precise optimization outcome. However, we found
that this is actually another benefit in our setting. We observed that
fine-grained tuning of the correction factors has little benefit. Fig. 2
illustrates this on a challenging example from our VCM applica-
tion. The figure compares optimization outcomes with the small set
of just four candidates we use in practice (“Practical”), to a more
fine-grained and wider-range alternative (“Extended”). Results for
each set are shown with our practical on-the-fly estimation ("Fil-
tered") and a ground-truth obtained from precomputed variances
("Precomp."). Even with accurate precomputation, the extended can-
didate pool does not provide measurable improvements. When used
in a practical fashion (optimized from a single sample per pixel) the
extended pool exacerbates issues arising from estimation error in
the optimizer and produces inferior results.

Dimensionality reduction. To minimize overhead, we want to min-
imize the number of correction factors. For that, we found two
effective solutions. First, we can group similar techniques together.
For example, our VCM application applies the same correction fac-
tor to all merging techniques in the same pixel. Another easy trick
is to optimize ratios of correction factors. For example, consider a
combination of two (groups of) techniques 𝑝 (𝑥) and 𝑞(𝑥). Any pair
of correction factors 𝑎 and 𝑏 applied to both is equivalent to their
ratio 𝑐 applied only to 𝑝 (or its reciprocal applied to 𝑞):

𝑎𝑝 (𝑥)
𝑎𝑝 (𝑥) + 𝑏𝑞(𝑥) =

𝑐𝑝 (𝑥)
𝑐𝑝 (𝑥) + 𝑞(𝑥) , where 𝑐 =

𝑎

𝑏
. (20)

We use this to reduce the number of correction factors and thus the
dimensionality of the optimization problem.

Pruning with prior knowledge. In most applications, we can ben-
efit from the knowledge gained in prior work to further reduce
overhead. For example, our VCM application only corrects the MIS
weights of the merging and light tracing techniques, because prior
work [Grittmann et al. 2019, 2021] has shown that these are the
most problematic ones. Additionally, we know that the weight of
those techniques is typically too large, so we further reduce the can-
didate pool by only considering 𝛾𝑡 ≤ 1. Asides from performance

gains, we found that leaving out unlikely candidates also improves
optimization robustness (also shown in Fig. 2).

4.2 Variance estimation
To pick the best correction factor, we estimate the variance of all
candidate choices. Since we want to support correlated samples, we
do not utilize the single-sample formulation used by the balance
heuristic (6). Rather, we directly estimate Eq. (5). Since the squared
first moment 𝐹 2 of the full estimator is a constant w.r.t 𝛾 , we can
neglect it and compute only an estimate of the second moment,

𝑀𝛾 = E


(∑︁
𝑡 ∈T

𝑛𝑡∑︁
𝑖=1

𝑤𝑡,𝛾 (𝑥𝑡,𝑖 )
𝑓 (𝑥𝑡,𝑖 )

𝑛𝑡𝑝𝑡 (𝑥𝑡,𝑖 )

)2 . (21)

Ground-truth computation. Accurate second moment estimates
can be obtained by rendering many (thousands) of iterations using,
e.g., the plain balance heuristic. For every candidate correction factor
𝛾 (a vector of 𝛾𝑡 if correction is applied to multiple techniques), we
accumulate one first moment estimate

⟨𝐹𝛾 ⟩ =
∑︁
𝑡 ∈T

𝑛𝑡∑︁
𝑖=1

𝑤𝑡,𝛾 (𝑥𝑡,𝑖 )
𝑤𝑡 (𝑥𝑡,𝑖 )

𝑤𝑡 (𝑥𝑡,𝑖 )
𝑓 (𝑥𝑡,𝑖 )

𝑛𝑡𝑝𝑡 (𝑥𝑡,𝑖 )
. (22)

This is identical to the usual pixel value computation, except that
each sample is multiplied by the highlighted term: the ratio between
the corrected MIS weight𝑤𝑡,𝛾 of this candidate and the MIS weight
that is used during variance estimation. At the end of each iteration,
the squared values of these first moments are then accumulated in
a running sum. So with 𝑁 iterations, we compute

⟨𝑀𝛾 ⟩ =
1
𝑁

𝑁∑︁
𝑖=1

⟨𝐹𝛾 ⟩2𝑖 . (23)

Then, we simply compare these values to pick the best 𝛾 .

Practical computation. In practice, we avoid costly precomputa-
tion and instead estimate the second moments on-the-fly from the
first rendering iteration. For that, we compute ⟨𝐹𝛾 ⟩ the same way
as for a ground-truth optimization (22). Since we have only a single
sample per pixel, directly comparing the squared values of these esti-
mates is not useful. Instead, we apply filtering, essentially averaging
⟨𝐹𝛾 ⟩2 over a pixel neighborhood to make squaring meaningful. This
filtering also reduces noise in the estimates.

Filtering. Fig. 3 provides an overview of our filter pipeline, show-
ing the optimized factor and resulting rendering after each stage.
We start by blurring ⟨𝐹𝛾 ⟩2 with a simple Gaussian filter. This makes
the squared values meaningful to compare at 1spp. The result at this
stage somewhat resembles the ground-truth (rightmost column),
but still shows drastic noise and artifacts in this challenging scene.
We found that this can be greatly improved by blurring relative

moments instead. For that, we compute a filtered version of the
rendered image and square the pixel values to obtain an approxi-
mation of 𝐹 2. The filtered second moment estimates of each pixel
are then divided by this value. We noticed two benefits from this
approach: First, it improved results around discontinuities. Second,
the division of two correlated quantities, namely the estimates of
the first and second moments that are computed from the same
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Fig. 3. Our filtering pipeline on an example from the VCM application. The top row shows the (hypothetical) correction factors 𝛾𝑡 at each stage. The second
row shows the rendered image when using these factors. We highlight two interesting regions in the crops below: The top one on the glass is a place
where the baseline (correlation-aware MIS, leftmost column) works well. The bottom one on the table cloth is an instance where further weight reduction is
desired. Unfiltered moments (second column) are too noisy to be useful. Applying just a simple blur (third column) yields visible artifacts. By computing
relative moments and blurring the resulting correction factors, we can achieve practical, single-sample optimization results that approach the precomputed
ground-truth (rightmost column) in quality.

samples, seems to reduce the overall noise. This introduces some
additional bias to the variance estimation, but we did not notice any
adverse effects.

Finally, after the best correction factor is picked in each pixel by
comparing the relative moments, we blur this factor image. This
avoids abrupt changes in the MIS weighting and thus prevents
visible discontinuities in the noise pattern of the rendered image.

We tuned the filter parameters per application: The VCM exper-
iments use a radius of 8 pixels, the resampling ones use a radius
of 32 pixels. That is because VCM combines many techniques and
thus has a lower noise level after just one iteration. In future work,
a more advanced filtering pipeline – like a state-of-the-art denoiser
– can be constructed. Appendix C discusses results from an initial
experiment with bilateral filtering.

4.3 Summary
To summarize, our practical applications employ the following steps:

(1) Render one sample per pixel; estimate ⟨𝐹𝛾 ⟩ per pixel and
candidate

(2) Filter pixel values (approximates 𝐹 2)
(3) Square the candidate means ⟨𝐹𝛾 ⟩ and blur over image (ap-

proximates𝑀𝛾 )
(4) In each pixel, pick 𝛾 with lowest𝑀𝛾/𝐹 2; blur over the image
(5) Render remaining samples with optimized𝑤𝛾

The individual applications differ only in the set of techniques and
filter parameters.

All experiments were run on an AMD Ryzen 9 5900X; images are
rendered at a 640 × 480 resolution with a maximum path length of

ten rays1. We also include renderings with 1920 × 1440 resolution
in the supplemental. The error metric we use is the relative mean-
squared error (relMSE), i.e., the squared error of each pixel is divided
by the squared ground-truth prior to averaging.
In addition to our main applications, we also show a quick test

for correlations in BDPT in Appendix B and abstract 1D examples
in Appendix A.

5 APPLICATION 1: VCM
Our first application is the vertex connection and merging (VCM)
[Georgiev et al. 2012; Hachisuka et al. 2012] algorithm. Previous
work has demonstrated two main MIS weighting issues in the con-
text of VCM [Grittmann 2023, Chapter 4]: First, a particularly strong
case of the “low-variance technique” challenge (see Section 3) arises
in the presence of simple direct illumination effects. Second, the
merging (aka photon mapping [Jensen 1996]) technique introduces
severe sample correlation and thus poor MIS weights.

Approach. We tackle these challenges by optimizing two indepen-
dent correction factors. For the direct illumination in each pixel, i.e.,
paths comprising two rays, we find 𝛾𝑙 , a scaling factor to reduce
the weight of the “light tracing” technique, i.e., direct connections
of light paths to the camera. For indirect illumination, we optimize
a joint 𝛾𝑚 , a scaling factor to reduce the weight of all merging
techniques in this pixel. The former 𝛾𝑙 addresses the low-variance
challenge. The latter 𝛾𝑚 also addresses this challenge (e.g., if simple
direct illumination is visible in a mirror) and also the sample corre-
lation challenge. For both cases, we only need to reduce the weight.
1The maximum depth is necessary for the comparison to VA-MIS.
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Fig. 4. Comparison of our MIS weight correction from a 20k spp precomputation (“Precomp.”) to the filtered 1spp solution we use in practice (“Filtered”). The
merge factor 𝛾𝑚 and light tracer factor 𝛾𝑙 are shown in rows “Merging" and “LT" respectively. White pixels retain the baseline MIS weights [Grittmann et al.
2021], darker ones have the weight of the corresponding technique reduced. The numbers below each pair of rows are the equal-sample speed-up when using
the corresponding weight correction, compared to the baseline. While our crude 1spp factors are quite far from converged, they do successfully identify the
regions in most dire need of weight correction (close to black pixels).

We thus found the following set of candidates sufficient:

𝛾𝑙 , 𝛾𝑚 ∈ {0.01, 0.1, 0.5, 1.0}. (24)

For our ground-truth comparisons, we use a larger number of candi-
date values in [0.01, 100], i.e., we also allow increasing the weight.
A benefit of our approach is that it can be combined with prior

work.We explore this by using our correction on top of the correlation-
aware MIS weights (CA-MIS) [Grittmann et al. 2021]. Unless indi-
cated otherwise, all our results use this combined approach.

5.1 Impact of filtering
Filtering prevents artifacts from noisy variances but could poten-
tially cause artifacts of its own. In fact, the filtered factors output by
our method look very noisy, as can be seen in the bottom two rows
of Fig. 4. The figure compares the ground-truth and 1spp correction
factors for a diverse set of test scenes. The numbers in Fig. 4 indicate
the equal-sample improvement over the baseline (CA-MIS) using the
precomputed or filtered solution. While the more accurate solution
can achieve significant further improvements in some challeng-
ing scenes, like Stage Night, most scenes do not stand to benefit
enough from it to justify investing further compute resources.
The rightmost column in Fig. 4 shows the worst-case scene we

found: Variance estimates in the Bookshelf are extremely noisy.
Our practical solution here results in a (just barely measurable)
performance degradation. The precomputed values, in comparison,
yield a minor speed-up of 10%. Future work could improve upon
this via better filtering schemes or iterative refinement. However,
care must be taken to avoid offsetting the achievable gains with the
added overhead.

Fig. 5 shows the adverse impact of noisy correction factors in
the worst-case example, in equal time. While our method achieves
significant improvements in some spots (top row of crops), the inac-
curate correction factors cause visible increases in noise elsewhere.
This is slightly worsened by the computational overhead of our
approach, amounting to one fewer iteration being rendered here.
While the overall performance is still on-par with the baseline, it
could be around ten percent better, as shown in Fig. 4.

5.2 Comparison to variance-aware MIS
On the surface, our approach is similar to variance-aware MIS (VA-
MIS) [Grittmann et al. 2019]: Both utilize variance estimates from
the first sample per pixel to enhance MIS weighting of subsequent
iterations. But compared to VA-MIS, our method (1) requires fewer
correction factors, (2) can be combined with other heuristics, and
(3) provides further improvements thanks to being an optimization
rather than a heuristic. In the following, we discuss the first two
cases, the general improvements are discussed in the main equal-
time comparison.

Low-variance weighting. VA-MIS was introduced to rectify the
“low variance technique” weighting issue. An example is shown in
Fig. 6, where direct illumination is rendered using an MIS combina-
tion of next-event estimation and light tracing. The former has next
to no variance thanks to the tiny light, but the balance heuristic
does not reflect that. VA-MIS can rectify this issue, but its correction
factor must be applied to all techniques. This can be seen by com-
paring columns (b) and (c), where (b) only corrects the light tracer
and (c) is the full solution. Our approach can optimize a ratio (𝛾𝑙
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Fig. 5. Equal-time comparison of our method to prior work in the worst case scene that we found. The false-color images visualize the error (relative squared
error), the numbers report the mean error in each crop and over the entire image, as well as the number of iterations rendered. Due to noisy estimates in the
optimization, we only improve some spots (top row of crops) while slightly degrading others (bottom row of crops).
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Fig. 6. Equal time (10s) comparison between balance heuristic, variance-
aware MIS, and ours for low-variance direct illumination. We compare two
variants of variance-aware: (b) only applied to light tracing and (c) applied
also to next event. Our method (d) only applies a factor to light tracing. The
false color images at the bottom visualize the correction factors. We achieve
similar results compared to (c) with fewer factors being computed.

here) and thus only needs a single factor to achieve similar results.
In the simple direct illumination case here, the overhead reduction
is insignificant. However, if we move to full global illumination in
a bidirectional algorithm, where the number of techniques scales
quadratically with the path length, cost quickly becomes an issue
for VA-MIS. Our method can freely control the number of correction
factors and obtains meaningful values for any setup.

Flexibility and composite solutions. A major advantage of our
approach is the design freedom in how it should be used. Fig. 7
compares different combined MIS weighting schemes on a difficult
setup. The Veach Bidir scene features severe MIS weighting is-
sues due to covariance in the merging techniques, as evident in
the high noise of the balance heuristic combination (a). VA-MIS
can be applied to this case (b) but it was not designed for it: Its
weight correction is too hesitant and the improvements achieved
are rather meagre. In contrast, using our optimization (c) directly
on the balance heuristic produces significant improvements, held

(a) Balance
relMSE 0.622 (1.00x)

(b) VA-MIS
relMSE 0.525 (1.18x)

(c) Ours + Balance
relMSE 0.130 (4.80x)

(d) CA-MIS
relMSE 0.057 (10.85x)

(e) VA + CA-MIS
relMSE 0.053 (11.70x)

(f) Ours + CA-MIS
relMSE 0.036 (17.51x)

Fig. 7. Equal-time (10s) study of different MIS weights for global illumi-
nation with VCM. Our approach can be applied directly to the balance
heuristic, or on top of other heuristics like correlation-aware MIS (CA-MIS).
We achieve consistent improvements in all cases, though the best results
are achieved in conjunction with the best baseline; here, that is CA-MIS.

back only by the noise in the 1spp correction factor estimation. The
CA-MIS heuristic [Grittmann et al. 2021] was specifically designed
for this problem and handles it well (d), although some residual
noise is evident. Our method also enables a theoretically sound way
to further enhance the CA-MIS weights (f). While VA-MIS can also
be arbitrarily applied on top of CA-MIS (e), this does not yield no-
ticeable improvements – unsurprisingly, since there is no theoretical
reason why this combination should perform well.

5.3 Equal-time performance
Thanks to the cheap 1spp single factor optimization, our method
compares favorably to prior work in equal-time comparisons. A
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Fig. 8. Equal-time results (30 seconds) from our VCM application. The false color images visualize the error (relative squared error) in each crop and over
the entire image. The inset texts provide the mean error values and speed-up compared to CA-MIS in each crop, the text below each row are the errors and
speed-ups over the entire image. Our method achieves visible improvements over a wide range of scene types and illumination effects, while never being
noticeably worse than the baseline.

selection of results is shown in Fig. 8. Full renderings of all scenes
can be found in the supplemental HTML files.

The first example is theVeach Bidir scene. It features challenging
indirect illumination, caustics, and severe correlation issues. CA-
MIS rectifies the worst of those. Our optimized version of it achieves
further improvements across most of the scene by further reducing
the weight of the problematic merging technique in many places.

The Stage Night shows a similar correlation-induced challenge,
this time paired with a large number of light sourcesinside lamp-
shades. Our correction removes noticeable outliers on the wall be-
hind the lamps.
In Spheres we observe the low-variance weighting issue on the

walls and in their specular reflections. Additionally, severe outliers

arise again from sample correlation (caused by indirect light from
the caustic underneath the glass ball). VA-MIS struggles to improve
upon this, and CA-MIS cannot compensate the low-variance issue
by design. Our method visibly reduces noise: on the walls and on
their reflections.
Finally, Target Practice features medium-difficulty diffuse il-

lumination from large light sources. Unnecessary noise from the
merging technique pollutes the rendering with the balance heuristic.
CA-MIS cannot remove it effectively: The uniform, yet high-variance
illumination violates an underlying assumption behind the heuristic
that CA-MIS employs, namely that sample density is an accurate
indicator of variance. Since our method is based on optimization
rather than heuristics, it does not suffer such issues.
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The overhead of our method is mainly due to the moment com-
putation and filtering in the first iteration. It amounts to roughly
the cost of 1-2 rendering iterations with VCM. This is insignificant
compared to the achievable speed-ups. Even in the worst case, when
no speed-ups can be had (like Fig. 5) the overhead is low enough to
not visibly degrade the image compared to the baseline.

6 APPLICATION 2: RESAMPLED IMPORTANCE
SAMPLING

Our second application is Resampled Importance Sampling (RIS)
[Talbot et al. 2005; Bitterli et al. 2020]. RIS is an example where
MIS must make due with only an approximation of the true sample
density: Resampling methods generate a set of candidate samples
and then resample a subset based on some target function. Hence,
the sampling density asymptotically follows the target density with
infinite candidates. However, the actual density for a finite number
of candidate samples is unknown. Furthermore, the target density
itself is also only known up to a normalization factor.

6.1 Setup
We render direct illumination with an MIS combination of BSDF-
and light sampling. For the light sampling, we generate 32 candi-
date samples via uniform area sampling of the light sources. From
these, we resample one sample with a target function based on the
unoccluded, BSDF-weighted contribution, i.e.,

𝑝∗ (𝑦 |𝑥, 𝜔o) = 𝐿e (𝑦 → 𝑥)𝐺 (𝑥,𝑦)𝐵(𝑥,𝑦, 𝜔o), (25)

where 𝑥 is the shading point, 𝜔o the direction from which 𝑥 is
observed, 𝑦 the sampled point on a light, 𝐿e the emitted radiance,
𝐺 (𝑥,𝑦) the geometry term [Veach 1997] (excluding visibility) and 𝐵
the BSDF. MIS is used to combine this with one BSDF sample.

ForMISweighting, we consider three alternatives to our approach:
Using the balance heuristic with the candidate PDF, the approach
of Nabata et al. [2020] who estimate the normalization constant of
the target density to use it for the balance heuristic (see Section 3),
as well as the VA-MIS weights.
The baseline for our method is the balance heuristic using the

candidate PDF. We modify it with a factor

𝛾𝑟 ∈ {0.01, 0.1, 0.5, 1.0} (26)

multiplied onto the BSDF sampling weight. Since resampling im-
proves the light sampling, we aim increase its weight by reducing
the weight of BSDF sampling. We use the same pool of candidate
values as for the VCM application.

6.2 Equal-time comparison
Fig. 9 shows results for three representative scenes. For each scene,
we show equal-time results with the practical filtering approach
in the first row, and equal-sample results with precomputation in
the second row. Fig. 10 shows the corresponding correction factors
computed by our method.
TheModern Hall scenes features many lights, complex occlu-

sion, and glossy surfaces. In the equal-time setting (first row) VA-MIS
struggles with the sever noise, causing visible artifacts. With pre-
computation, the heuristic nature of VA-MIS becomes apparent: It

was not designed for this challenge and hence performs unsatisfac-
torily. The domain-specific solution of Nabata et al. [2020] works
well here, albeit with slightly higher noise in the practical setup
compared to our solution.

The Rgb Sofa showcases a low-variance problem arising due to
resampling. VA-MIS handles this case well, as it was designed for
it. The approach of Nabata et al. [2020] only tackles the unknown
resampling PDF and inherits the low-variance problem from the
underlying balance heuristic. In this example, that actually amplifies
the low-variance weighting issue. Our method performs on-par with
VA-MIS.

The Veach MIS showcases a limitation of our method. First, our
crude filtering pipeline is not sensitive to the sharp edges of the re-
flection. Thus, in equal-time, our method is worse than Nabata et al.
around those edges. Second, the cropped region shows a well-known
low-variance problem where higher weights for BSDF sampling are
desired [Veach and Guibas 1995]. However, we are only considering
candidates that reduce the BSDF weight. Including additional can-
didates is possible, but introduces higher error in the optimization
and a higher overhead.

Overall, our results show that none of the prior solutions perform
satisfactorily for every scene. Our method performs on-par with the
best solution in each scene, thus it is the only consistent solution
of the options we have considered here. Note that all options –
VA-MIS, Nabata et al., and ours – require the use of filtered noisy
estimates. Namely, the technique variances, normalization factor,
and candidate variances, respectively. Finding an alternative with
no added memory cost remains an open problem.

7 LIMITATIONS AND FUTURE WORK
Filtering. The main limitation of our method is that we operate

with variance estimates from a single sample per pixel. Hence, the
filtering we apply is a crucial component. It is also the source of the
majority of our overhead. A better filtering approach could offer
two benefits: First, the quality can be improved by more accurate
filtering, such as using a modern denoiser. Second, the overhead
can be reduced by reducing the filtering cost. Unfortunately, these
two goals contradict each other, so a good trade-off is needed.

Adaptive candidate selection. A key step to make our method prac-
tical was to carefully choose the set of allowed candidates. Allowing
too many results in undue overhead; allowing too severe weight
adjustment in the wrong direction (i.e., increases of weight for a
very poor technique) risks image degradation. So, each practical
application of our method must carefully review this choice of can-
didates. To increase accuracy without undue overhead, an adaptive,
iterative scheme like the Nelder-Mead method could be used instead
of an a-priori fixed set. For robustness against extreme adverse
weight changes, statistical tests could replace simple comparisons.
For example, a chi-squared test can be used to avoid picking a poor
candidate with severely underestimated variance.

Spatial structure. In our rendering application, we computed the
correction factor in image space, where filtering is easy and the
behavior of the method is easy to understand and easy to compare to
others. It could be interesting to explore how the approach behaves
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Fig. 9. Representative results for the resampled direct illumination application. For each scene, we show equal-time (5 seconds) results with filtering in the
first row, and equal-sample (20) with precomputation in the second row. “Balance” uses the candidate PDF for MIS weighting and is the only method that
requires neither auxiliary memory nor precomputation. Our method performs on-par with the best prior alternative in each scene and is thus the only one
that consistently improves upon the balance heuristic.
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Fig. 10. Comparsion of our MIS weight correction factors from a 20k spp
precomputation (center) to the filtered 1spp solution we use in practice.
White pixels retain closer to balance heuristic. Darker pixels are the regions
where Bsdf weights are reduced.

if factors are optimized in 3D scene space instead. Doing so allows
for finer control over the MIS weights, but complicates filtering and
increases cost.

Real-time application. We showed our simple optimization scheme
is effective for resampling methods. It would be interesting to apply
our approach to real-time applications like ReSTIR [Bitterli et al.
2020; Lin* et al. 2022], which inherit the same issue from unknown
PDFs. However, this will require some form of carefully designed
temporal reuse and probably a cheaper filtering approach.

Single-sample optimization. Our usage of pixel variance approx-
imations from a single-sample iteration might be insufficient in
some settings. One case are adaptive algorithms, like path guiding,
MCMC methods, or temporal sample reuse, where sampling quality
improves over time. These will likely require at least sporadic incre-
mental updates of our optimization factors. Another challenge are
low-discrepancy samples: If these are not sufficiently decorrelated
across pixels, then the pixel variances estimated in early iterations
might be distorted by the sampling artifacts. This is again an issue
that can be resolved via iterative refinement, although the more
desirable solution would be to simply use uncorrelated sampling
sequences to begin with.

Pixel correlation. Some rendering techniques can exhibit severe
pixel correlation. Examples include most Markov chain Monte Carlo
(MCMC) methods [Šik and Křivánek 2018] or spatiotemporal reuse
schemes [Bitterli et al. 2020]. These often exhibit splotchy artifacts
in the image from reusing the same, high-contribution sample over
many neighboring pixels. This type of correlation is not accounted
for by our approach: Like all prior work on MIS, we consider only
the variance within pixels, thus ignoring correlation between differ-
ent pixels. In an MIS context, it might be beneficial to reduce the
weight of techniques with severe pixel correlation. Sadly, this objec-
tive cannot be achieved with our current formulation, as the pixel

variance, by definition, does not contain correlation between pixels.
Future work could investigate if MIS weights can (and should) be
altered to encourage low, or even negative, correlation between pix-
els. This is closely related to blue-noise error distribution methods
[Georgiev and Fajardo 2016].

Negative weights. Optimal MIS weights [Kondapaneni et al. 2019]
show significant improvements by allowing negative weights. Our
1D examples in Appendix A show that such benefits can theoreti-
cally also be obtained via our optimization. However, in rendering
practice, we did not find a case where negative weighting was bene-
ficial. It is possible that these improvements only occur when the
MIS weights encode a control variate [Kondapaneni et al. 2019; Hua
et al. 2023; Owen and Zhou 2000] – that would explain why our
corrected balance heuristic did not profit from negative weighting.
However, further research is required to see if negative weighting
can be utilized in a practical way in complex MIS combinations like
the VCM algorithm.

Optimal weights for correlation. Finally, the answer to a major
question continues to elude us is: What are the truly optimal MIS
weights for cases where the samples are correlated within and
across the different techniques? While we can find the optimal
corrected balance heuristic that accounts for correlation, it remains
unclear how much improvements could be had by moving away
from balance-style MIS weights altogether.

8 CONCLUSION
We present a generic recipe to adaptively correct MIS weights while
rendering. We start with an initial guess of a well-suited MIS weight-
ing function (e.g., the balance or power heuristic), and a set of
candidate correction factors. The latter are chosen based on prior
knowledge or mathematical analysis of the application. Through
direct search over those candidate correction factors, we can then
find the best MIS weighting function on-the-fly. By minimizing the
number of allowed candidates and applying careful filtering, we
can run our method off of just a single sample per pixel. Thus, we
achieve significant, consistent improvements over prior work in
equal-time. We demonstrate these improvements on two practical
applications: Bidirectional rendering with the VCM algorithm, and
resampled direct illumination.
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A DISCUSSION IN 1D
Fig. 11 compares the performance of differentMISweighting schemes
in illustrative 1D examples. Each row corresponds to a different in-
tegration problem. The first column (a) plots the integrand and the
sampling techniques. Columns (b-f) show the MIS weights with dif-
ferent methods. We compare, from left to right, the original balance
and power heuristics [Veach and Guibas 1995], the variance-aware
balance heuristic [Grittmann et al. 2019], the optimal weights [Kon-
dapaneni et al. 2019] and our corrected balance heuristic. For our
method, we consider correction factor candidates in [−1, 1]. We use
a regular subdivision and 20 candidates for each technique. The last
column (g) compares the resulting variances.

Biased techniques. In the first example (top), the blue technique
is biased: it only samples a portion of the domain. This setup is not
supported by the variance-aware weights, resulting in a higher error
than with the balance heuristic. Our approach supports arbitrary
setups and here achieves close to optimal MIS weighting.

Negative weights. The middle row shows a setup where a negative
weight can reduce the variance significantly. Here, 𝑝1 (blue) and 𝑝2
(orange) are extremely bad techniques, 𝑝3 (green) is uniform, i.e., not
great but not horrible either. By allowing negative weights – through
our correction factors – we can achieve drastic improvements over
the balance heuristic here.

Defensive sampling. A classic failure case of the balance heuris-
tic arises from the combination of (potentially) low-variance tech-
niques with other techniques [Veach and Guibas 1995; Grittmann
et al. 2019]. The bottom row shows one such case. Here, 𝑝2 (orange)
is almost proportional to the integrand, but not ideally so, neces-
sitating the need for defensive sampling [Owen and Zhou 2000].
Here, all MIS weights except for the optimal ones have similar shape.
The main difference occurs around the tail on the right side. There,
the balance, power and variance-aware weights are too high for
𝑝3 (green). In contrast, optimal MIS relies more heavily on 𝑝2 (or-
ange) in that part, additionally utilizing negative weights. While
our correction does not yield a negative shape as optimal MIS, we
do reduce the weight assigned to 𝑝3 correctly. VA-MIS moves in a
similar direction, but too meekly.

B CORRELATION IN BIDIRECTIONAL PATH TRACING
We revisit a failure case of CA-MIS in Fig. 12. Here, the integrator is
bidirectional path tracing (i.e., no merging) with multiple shadow
rays used for next event estimation (we use 50). This also causes
sample correlation, albeit at a much lower scale than with merging.
TheModern Hall scene is lit quite evenly by 300 lights from multi-
ple directions. CA-MIS here incorrectly “assumes” that the low light
density indicates high variance, when in reality it is a consequence
of the more uniform distribution of light. As a result, performance
is much worse than with the plain balance heuristic. Our method
can be used to restore most of the better performance of the balance
heuristic, as demonstrated with the ground-truth precomputed fac-
tors in the rightmost column. Here, we apply a global correction
factor to the next-event techniques with candidates chosen from
{1.0, 10, 30, 50, 100}. Our practical 1spp solution struggles to achieve
the best result possible here: since the required weight correction is
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relMSE 0.194 (1.00x), 20
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(b) Ours
relMSE 0.102 (1.90x), 22
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(c) Balance
relMSE 0.083 (2.36x), 22
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Fig. 12. An equal-time (60s) evaluation of our correction applied to a corre-
lated bidirectional path tracer with multiple shadow rays. In this worst-case
for CA-MIS, we can almost fully restore the better performance of the bal-
ance heuristic through our correction factors.

VeachMIS

relMSE
zoom-in

Reference

relMSE
global

1.178e-011.178e-01 4.975e-024.975e-02 3.907e-023.907e-02 1.928e-021.928e-02

Balance R8 R32 Bilateral

6.829e-02
1.00x

1.968e-02
3.47x

1.962e-02
3.48x

2.019e-02
3.38x

Fig. 13. An equal-sample (20 spp) comparison of our filtering pipeline with
different blur radii (R8, R32) and a bilateral filter. Due to the noisy correction
factors, our filtering pipeline may generate inconsistent noise in some areas.
Using bilateral filtering can eliminate those, but this requires carefully
selected parameters and introduces additional overhead.

quite drastic, it overshoots the target and yields unnecessary outliers
above the staircase. Such cases where very severe weight correction
is required would benefit from improved denoising of the variance
estimates, or incremental refinement of the correction factors.

C BILATERAL FILTER
We found that a primitive filter pipeline, based on aggressive Gauss-
ian blurring, performs satisfactorily. Better filters, like bilateral ones
or even deep-learning-based solutions, can yield slightly better re-
sults but at a higher cost and complexity.We have experimentedwith
bilateral filtering, using surface normals and distance as auxiliary
features. Fig. 13 shows one of the results with the most significant
improvement from the RIS application. In this scene, the variance
estimates are very noisy. This causes a small spot in the image to
have visibly higher noise than its surroundings. A bilateral filter
can help to remove these by blurring more aggressively without
harming the quality around discontinuities. Across most of the im-
age, the result with bilateral filtering is the same as with our simpler
approach, as evident from the approximately identical equal-sample
error values in the figure. Full resolution images can be found in
the supplemental.
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